Abstract
MultiFlow® DNA Damage-p53, γH2AX, Phospho-Histone H3 is a miniaturized, flow cytometry-based assay that provides genotoxic mode of action information by distinguishing clastogens, aneugens, and nongenotoxicants. Work to date has focused on the p53-competent human cell line TK6. While mammalian cell genotoxicity assays typically supply exogenous metabolic activation in the form of concentrated rat liver S9, this is a less-than-ideal approach for several reasons, including 3Rs considerations. Here, we describe our experiences with low concentration S9 and saturating co-factors which were allowed to remain in contact with cells and test chemicals for 24 continuous hours. We exposed TK6 cells in 96-well plates to each of 15 reference chemicals over a range of concentrations, both in the presence and absence of 0.25% v/v phenobarbital/β-naphthoflavone-induced rat liver S9. After 4 and 24 hr of treatment cell aliquots were added to wells of a microtiter plate containing the working detergent/stain/antibody cocktail. After a brief incubation robotic sampling was employed for walk-away flow cytometric data acquisition. PROAST benchmark dose (BMD) modeling was used to characterize the resulting dose-response curves. For each of the 8 reference pro-genotoxicants studied, relative nuclei count, γH2AX, and/or p53 biomarker BMD values were order(s) of magnitude lower for 0.25% S9 conditions compared to 0% S9. Conversely, several of the direct-acting reference chemicals exhibited appreciably lower cytotoxicity and/or genotoxicity BMD values in the presence of S9 (eg, resorcinol). These results prove the efficacy of the low concentration S9 system, and indicate that an efficient and highly scalable multiplexed assay can effectively identify chemicals that require bioactivation to exert their genotoxic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.