Abstract

Linear Magnetic Dichroism in the Angular Distribution of the photoelectrons is observed in angular resolved photoemission experiments with linearly polarized light on 3p core levels of the ferromagnetic transition metals. The measured magnetic asymmetry is strictly related to the one observed in photoemission with circularly polarized radiation. Atomic theory shows that the effect is proportional to the state multipoles that characterize the polarization of the hole levels under the exchange interaction. By peak-fitting the experimental dichroic core level spectra and by calculating the relevant multipoles one can resolve the fine structure of the 3p core hole states of ferromagnetic Fe and Co and obtain the m j ordering of the sublevels. We show that the energy order for the 3p hole-levels of Fe and Co is reversed for the J= 3 2 and J= 1 2 multiplets, and that spin-selected lineshapes can be derived from our analysis and compared with spin-resolved photoemission data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.