Abstract

A higher trans-epidermal water loss (TEWL) occurs in rough skin, in elder skin and also in atopic dermatitis. An impaired skin barrier function is considered to be caused by an incomplete construction of the intercellular lamellar structure due to the quantitative reduction of ceramides. Since these symptoms coexist with oxidative stress, we hypothesized that impairment of the skin barrier function is accelerated by oxidative stress. Thus, the purpose of this study was to clarify the effect of oxidative stress on ceramide synthesis and to characterize whether antioxidants can improve skin barrier function. 3-O-Laurylglyceryl ascorbate (VC-3LG), which is a newly amphipathic derivative of ascorbic acid, was evaluated as a candidate antioxidant. We characterized the mRNA expression levels of serine palmitoyltransferase (SPT) in normal human epidermal keratinocytes (NHEKs) treated with H2 O2 using real-time PCR analysis. In order to evaluate the effect of VC-3LG on skin barrier function, we used several assays with reconstructed human epidermis equivalents (RHEEs). Ceramide synthesis was down-regulated in NHEKs by oxidative stress. Treatment with VC-3LG abrogated the down-regulation of SPT mRNA in NHEKs caused by oxidative stress, and stimulated SPT mRNA expression levels. In experiments characterizing the antioxidative properties of VC-3LG, VC-3LG reduced oxidative stress in NHEKs by up-regulating catalase mRNA expression. In addition, VC-3LG stimulated the skin barrier function in RHEEs, which had lower TEWL values compared with untreated RHEEs. Furthermore, VC-3LG increased the quantity of ceramide in RHEEs. Taken together, we conclude that VC-3LG reinforces the skin barrier function due to its reduction of oxidative stress and its promotion of ceramide synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.