Abstract

Grötzsch proved that every triangle-free planar graph is 3-colorable. Thomassen proved that every planar graph of girth at least five is 3-choosable. As for other surfaces, Thomassen proved that there are only finitely many 4-critical graphs of girth at least five embeddable in any fixed surface. This implies a linear-time algorithm for deciding 3-colorablity for graphs of girth at least five on any fixed surface. Dvořák, Král' and Thomas strengthened Thomassen's result by proving that the number of vertices in a 4-critical graph of girth at least five is linear in its genus. They used this result to prove Havel's conjecture that a planar graph whose triangles are pairwise far enough apart is 3-colorable. As for list-coloring, Dvořák proved that a planar graph whose cycles of size at most four are pairwise far enough part is 3-choosable.In this article, we generalize these results. First we prove a linear isoperimetric bound for 3-list-coloring graphs of girth at least five. Many new results then follow from the theory of hyperbolic families of graphs developed by Postle and Thomas. In particular, it follows that there are only finitely many 4-list-critical graphs of girth at least five on any fixed surface, and that in fact the number of vertices of a 4-list-critical graph is linear in its genus. This provides independent proofs of the above results while generalizing Dvořák's result to graphs on surfaces that have large edge-width and yields a similar result showing that a graph of girth at least five with crossings pairwise far apart is 3-choosable. Finally, we generalize to surfaces Thomassen's result that every planar graph of girth at least five has exponentially many distinct 3-list-colorings. Specifically, we show that every graph of girth at least five that has a 3-list-coloring has 2Ω(n)−O(g) distinct 3-list-colorings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call