Abstract

Kynurenine pathway is gaining attention due to the many metabolic processes in which it has been involved. The tryptophan conversion into several other metabolites through this pathway provides neuronal and redox modulators useful for maintenance of major functions in the brain. However, when physiopathological conditions prevail – i.e. oxidative stress, excitotoxicity, and inflammation – preferential formation and accumulation of toxic metabolites could trigger factors for degeneration in neurological disorders. 3-Hydroxykynurenine has been largely described as one of these toxic metabolites capable of inducing oxidative damage and cell death; consequently, this metabolite has been hypothesized to play a pivotal role in different neurological and psychiatric disorders. Supporting evidence has shown altered 3-hydroxykynurenine levels in samples of patients from several disorders. In contrast, some experimental studies have provided evidence of antioxidant and scavenging properties inherent to this molecule. In this review, we explored most of literature favoring one or the other concept, in order to provide an accurate vision on the real participation of this tryptophan metabolite in both experimental paradigms and human brain pathologies. Through this collected evidence, we provide an integrative hypothesis on how 3-hydroxykynurenine is exerting its dual actions in the Central Nervous System and what will be the course of investigations in this field for the next years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.