Abstract

In order to investigate the 3He-n-p system as a three-body problem, we have formulated 3He-n and 3H-p effective potentials using both a microscopic treatment and a phenomenological approach. In the microscopic treatment, potentials are generated by means of the resonating group method (RGM) based on the Minnesota nucleon-nucleon potential. These potentials are converted into separable form by means of the Microscopic Pauli Correct (MPC) method. The MPC potentials are properly formulated to avoid Pauli forbidden states. The phenomenological potentials are obtained by modifying parameters of the EST approximation to the Paris nucleon-nucleon potential, such that they fit the low-energy 3He-n, 3H-p, and 3He-p phase shifts. Therefore, they describe the 3He-n differential cross section, the polarization observables, and the energy levels of 4He. The 3He-n-p Faddeev equations are solved numerically. We reproduce correctly the ground state and the first excited state of 5Li. Furthermore, the Paris-type potential is used to investigate the 3He(d,p) 4He reaction at a deuteron bombarding energy of 270 MeV, where the system is treated as a three-body problem. Results for the polarized and unpolarized differential cross sections demonstrate convergence of the Born series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.