Abstract

The alpha 2 adrenergic antagonist [3H]rauwolscine binds with comparable nanomolar affinity to alpha 2 adrenoceptors and the nonadrenergic 5-HT1A receptors sites in human frontal cortex membranes. Addition of 0.5 mM GTP into the incubation medium produces a significant decrease in the amount of [3H]rauwolscine binding sites (Bmax = 230 +/- 16 and 115 +/- 11 fmol/mg protein in the absence and presence of GTP, respectively). The affinity for [3H]rauwolscine remains unchanged (i.e. KD = 40 +/- 0.9 nM and 4.1 +/- 1 nM). This effect of GTP can be attributed to decreased binding of the radioligand to the 5-HT1A receptors. GTP decreases binding of [3H]rauwolscine to nearly the same level as the one corresponding to the alpha 2 adrenoceptors in membranes from both the human frontal cortex and hippocampus. The venom of the marine cone snail, Conus tessulatus, preferentially inhibits [3H]rauwolscine binding to 5-HT1A receptors as compared with the alpha 2 adrenoceptors. Following complete masking of the 5-HT1A receptors by this venom. GTP no longer affects the saturation binding characteristics of [3H]rauwolscine for the remaining alpha 2 adrenoceptors. Nucleotides decrease the binding of [3H]rauwolscine to the 5-HT1A receptors with an order of potencies (i.e. GTP gamma S greater than GPP(NH)P much greater than GDP greater than GTP much greater than ATP) that is typical for nucleotide-mediated receptor-G protein dissociation. This suggests that [3H]rauwolscine is a 5-HT1A receptor agonist and this conclusion is compatible with earlier functional studies, indicating that rauwolscine (as well as yohimbine) has agonistic properties at the level of 5-HT autoreceptors.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.