Abstract

The luteinizing hormone (LH) receptor plays a pivotal role in reproduction. The high-molecular-weight (HMW) human chorionic gonadotropin (hCG) and LH are the endogenous ligands of this receptor and bind to its large N terminus. The present study characterizes the binding of a new low-molecular-weight (LMW) radioligand, [(3)H]5-amino-2-methylsulfanyl-4-[3-(2-morpholin-4-yl-acetylamino)-phenyl]-thieno[2,3-d]pyrimidine-6-carboxylic acid tert-butylamide (Org 43553), at the LH receptor. Equilibrium saturation and displacement assays were developed and optimized. Specific binding of [(3)H]Org 43553 to CHO-K1 cell membranes expressing the human LH receptor and a cAMP response element-luciferase reporter gene was saturable with a K(D) value of 2.4 +/- 0.4 nM and a B(max) value of 1.6 +/- 0.2 pmol/mg protein. Affinities of five LMW analogs of Org 43553 were determined. All displaced the radioligand competitively, with K(i) values ranging from 3.3 to 100 nM. Finally, the potency of these compounds in a cAMP-induced luciferase assay was also determined. There was a high correlation between affinity and potency (r = 0.99; P < 0.0001) of these compounds. In the search for LMW ligands, which bind allosterically to the seven-transmembrane domain of the LH receptor, a HMW radioligand (e.g., (125)I-hCG) is not suitable as it is not displaced by a LMW compound. Therefore, [(3)H]Org 43553, a new radioligand with good binding properties, allows screening for new LMW ligands that mimic the action of the endogenous hormone at the LH receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.