Abstract

Harman (1-methyl-beta-carboline) is an endogenous compound with neurotropic properties in rats and humans. In a novel in vitro binding assay, the binding site of [3H]harman has been characterized in the rat crude mitochondrial (P2) fraction. The binding was saturable and reversible. Only a single high-affinity binding site was detected by kinetic, saturation, and displacement analyses in the cerebral cortex of the rat. The linear Scatchard plots revealed equilibrium dissociation constant (KD) values of approximately 2.5 nM at 0 degrees C, approximately 9 nM at 23 degrees C, and approximately 30 nM at 37 degrees C. Among six CNS regions (hypothalamus, hippocampus, cerebral cortex, striatum, cerebellum, and spinal cord), the highest density of binding sites (Bmax) was determined in the hypothalamus (approximately 5.5 pmol/mg of protein) and the lowest in the spinal cord (approximately 2.0 pmol/mg of protein). Several drugs known to affect serotonergic, adrenergic, dopaminergic, cholinergic, or GABAergic neurotransmission inhibited specific binding at best in the micromolar range. In contrast, potent and selective inhibitors of monoamine oxidase subtype A were active in the lower and middle nanomolar range. The displacing potency (apparent Ki) of substrates and inhibitors of monoamine oxidase correlated positively and highly significantly with the corresponding values of the inhibition of monoamine oxidase activity of subtype A (r = 0.92, p less than 0.001, n = 17) but not of subtype B (r = -0.47, p greater than 0.05, n = 15). In conclusion, [3H]harman was identified as a specific ligand of the active site of the A subtype of monoamine oxidase in rat brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call