Abstract

Energy, exergy and exergoeconomic (3E) evaluation are performed to assess the performance of a NH3/H2O cycle integrated with parabolic trough solar collectors (PTSC). To provide continuous electricity produced by generator when solar beam radiation is insufficient a stabilizer temperature subsystem is utilized. The major thermodynamic parameters and climate conditions variations are selected to investigate, for their effects on the energy efficiency, exergy efficiency and unit cost of electricity of the overall system. The results reveal that the solar collectors exhibit the worst exergy and exergoeconomic performance, so that when system is only fuelled by solar energy, elevation of solar beam irradiation around 40% reduces the efficiencies and electricity production cost within 23% and 0.4%, respectively. It is found that the increment of ammonia basic concentration, turbine inlet pressure, evaporator inlet temperature and evaporator pinch temperature lead to elevation of energy and exergy efficiencies and decrement of electricity production cost. Then, the single and multi-objective optimizations are performed to maximize the energy and exergy efficiencies and minimize the electricity production cost based on genetic algorithm (GA). Results indicate that the electricity production cost obtained through economic optimization is less than around 2% and 2.2% compared to the optimization based on the first and second laws of thermodynamics. Multi objective optimization causes reduction of electricity production cost around 14% and enhancement the energy and exergy efficiencies 8.5% and 6.7%, respectively too.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call