Abstract

Based on the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) aerosol scheme of the Weather Research and Forecasting model coupled with online Chemistry (WRF-Chem) and the three-dimensional variational (3DVAR) assimilation method, a 3DVAR data assimilation (DA) system for aerosol optical depth (AOD) and aerosol concentration observations was developed. A case study on assimilating the Himawari-8 satellite AOD and/or fine particulate matter (PM2.5) was conducted to investigate the improvement of DA on the analysis accuracy and forecast skills of the spatial distribution characteristics of aerosols, especially in the vertical dimension. The aerosol extinction coefficient (AEC) profile data from The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), surface PM2.5 and Himawari-8 AOD measurements were used for verification. One control experiment (without DA) and two DA experiments including a PM2.5 DA experiment denoted by Da_PM and a combined PM2.5 and AOD DA experiment denoted by Da_AOD_PM were conducted. Both DA experiments had positive effects on the surface PM2.5 mass concentration forecast skills for more than 60 h. However, the Da_PM showed a slight improvement in the analysis accuracy of the AOD distribution compared with the control experiment, while the Da_AOD_PM showed a considerable improvement. The Da_AOD_PM had the best positive effect on the AOD forecast skills. The correlation coefficient (CORR), root mean square error (RMSE), and mean fraction error (MFE) of the 24 h AOD forecasts for the Da_AOD_PM were 0.73, 0.38, and 0.54, which are 0.09 (14.06%), 0.08 (17.39%), and 0.22 (28.95%) better than that of the control experiment, and 0.05 (7.35%), 0.06 (13.64%), and 0.19 (26.03%) better than that of the Da_PM, respectively. Moreover, improved performance for the Da_AOD_PM occurred when the AEC profile was used for verification, as when the AOD was used for verification. The Da_AOD_PM successfully simulated the first increasing and then decreasing trend of the aerosol extinction coefficients below 1 km, while neither the control nor the Da_PM did. This indicates that assimilating AOD can effectively improve the analyses and forecast accuracy of the aerosol structure in both the horizontal and vertical dimensions, thereby compensating for the limitations associated with assimilating traditional surface aerosol observations alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call