Abstract

Data-driven methods, in particular machine learning, can help to speed up the discovery of new materials by finding hidden patterns in existing data and using them to identify promising candidate materials. In the case of superconductors, the use of data science tools is to date slowed down by a lack of accessible data. In this work, we present a new and publicly available superconductivity dataset (‘3DSC’), featuring the critical temperature TC of superconducting materials additionally to tested non-superconductors. In contrast to existing databases such as the SuperCon database which contains information on the chemical composition, the 3DSC is augmented by approximate three-dimensional crystal structures. We perform a statistical analysis and machine learning experiments to show that access to this structural information improves the prediction of the critical temperature TC of materials. Furthermore, we provide ideas and directions for further research to improve the 3DSC. We are confident that this database will be useful in applying state-of-the-art machine learning methods to eventually find new superconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.