Abstract
Humans inherently perceive 3D scenes using prior knowledge and visual perception, but 3D reconstruction in computer graphics is challenging due to complex object geometries, noisy backgrounds, and occlusions, leading to high time and space complexity. To addresses these challenges, this study introduces 3DRecNet, a compact 3D reconstruction architecture optimized for both efficiency and accuracy through five key modules. The first module, the Human-Inspired Memory Network (HIMNet), is designed for initial point cloud estimation, assisting in identifying and localizing objects in occluded and complex regions while preserving critical spatial information. Next, separate image and 3D encoders perform feature extraction from input images and initial point clouds. These features are combined using a dual attention-based feature fusion module, which emphasizes features from the image branch over those from the 3D encoding branch. This approach ensures independence from proposals at inference time and filters out irrelevant information, leading to more accurate and detailed reconstructions. Finally, a Decoder Branch transforms the fused features into a 3D representation. The integration of attention-based fusion with the memory network in 3DRecNet significantly enhances the overall reconstruction process. Experimental results on the benchmark datasets, such as ShapeNet, ObjectNet3D, and Pix3D, demonstrate that 3DRecNet outperforms existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.