Abstract

Resistance to folate antagonists is caused by mutations in the dihydrofolate reductase (DHFR) genes. These mutations affect the amino acids at positions 51, 59, 108 and 164 of DHFR, which appear to play a major role in malaria treatment failure. Therefore, the design of new drugs able to overcome the problem of antifolate drug resistance should receive urgent attention. In this study, a three-dimensional quantitative structure-activity relationship (3 D-QSAR) and molecular docking studies have been performed on antimalarial quinazoline derivatives. The CoMFA (Q2 = 0.63, R2 = 0.83 and = 0.70) and the CoMSIA (Q2 = 0.584, R2 = 0.816, and = 0.73) models show a good prediction of antimalarial activity. The reliability and robustness of the proposed models have been tested using several validation methods, which showed that the steric, electrostatic, hydrophobic and H-bond acceptor fields of the CoMSIA model play a key role in the prediction of antimalarial activity. Molecular docking studies reveal important interactions between two isomeric compounds (meta and para) and the DHFR receptor in its wild and mutant forms. The obtained outcomes of molecular docking studies have been validated using a new method based on visual inspection. The DFT study of the two isomeric compounds confirms clearly the trends of 3 D-QSAR and molecular docking for the design of new compounds. Moreover, the consistency between theoretical, 3 D-QSAR and molecular docking analysis provides guidance for the design of new drug candidates, which have been tested using ADMET properties and drug likeness analysis. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call