Abstract

Parkinson’s disease affects millions of people around the world. Recently, adenosine A2A receptor antagonists have been identified as a drug target for the treatment of Parkinson’s disease. Consequently, there is an immediate need to develop new classes of A2A receptor antagonists. In the present analysis, three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed on a series of pyrimidines, using comparative molecular field analysis (CoMFA). The best prediction was obtained with a CoMFA standard model (q2 = 0.475, r2 = 0.977) and a CoMFA region focusing model (q2 = 0.637, r2 = 0.976) combined with steric and electrostatic fields. The structural insights derived from the contour maps helped to better interpret the structure–activity relationships. Also, to understand the structure–activity correlation of A2A receptor antagonists, we have carried out molecular docking analysis. Based on the results obtained from the present 3D-QSAR and docking studies, we have identified some key features for increasing the activity of compounds, which have been used to design new A2A receptor antagonists. The newly designed molecules showed high activity with the obtained models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.