Abstract

During medial patellofemoral ligament (MPFL) reconstruction, fluoroscopic determination of the femoral tunnel point is the most common method. However, there is a decrease in tunnel position accuracy due to rotation of the femur during fluoroscopy, as well as the damage to the operator from multiple fluoroscopies, whereas the 3D-printed individualized navigation template is not affected by this factor. This study focuses on the accuracy and early clinical efficacy of 2 different ways to determine the femoral tunnel (Schöttle point) for double-bundle isometric MPFL reconstruction. This is a retrospective study, conducted between 2016 and 2019, in which 60 patients with recurrent patellar dislocation were divided into 2 groups: 30 with MPFL reconstruction at the Schöttle point determined by 3D-printed individualized navigation template (group A) and 30 with MPFL reconstruction at the Schöttle point determined by fluoroscopic guidance (group B). The changes in patella congruence angle and patella tilt angle before and after surgery were assessed using computed tomography scans of the knee, knee function was assessed using the Kujala knee score and the international knee documentation committee (IKDC) score, and the 2 approaches were compared for the intraoperative establishment of the femoral tunnel position at a distance from Schöttle point. At a minimum of 3 years follow-up, patella tilt angle and patella congruence angle returned to normal levels and were statistically different from the preoperative range, with no significant differences between the 2 groups at the same period, and Kujala and IKDC scores of knee function were significantly improved in both groups after surgery. The mean Kujala and IKDC scores were statistically different between groups A and B at 3 and 6 months postoperatively. No statistically significant differences were seen between the 2 groups at the final follow-up. Both femoral tunnel localization approaches for double-bundle isometric MPFL reconstruction resulted in good knee function. At no < 3 years of follow-up, the use of a 3D-printed individualized navigation template did result in more accurate isometric points and higher knee function scores in the early postoperative period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.