Abstract
Due to the increasing cases of bone damage and bone graft demand, bone-repair technology has great social and economic benefits and the manufacturing of artificial bone implants has become a focus in the domain of regenerative therapy. Considering that the traditional manufacturing process cannot effectively control the overall size of the scaffold, the diameter and shape of micropores, and the interoperability of micropores, 3D printing technology has emerged as a focal point of research within the realm of bone tissue engineering. However, the printing accuracy of extrusion-based biological 3D printing techniques is low. In this research, we utilized three-dimensional printing technology to develop high-precision magnesium-containing silicate (CSi-Mg) scaffolds. The precision of this innovative method was scrutinized and the influence of pore size on scaffold strength was systematically analyzed. Furthermore, the influence of the pore architecture on the sidewalls of these 3D-printed scaffolds was evaluated in terms of mechanical properties. The CSi-Mg scaffold, post a 3-week immersion in a simulated body of fluid, demonstrated a high modulus of elasticity (exceeding 404 MPa) and significant compressive strength (beyond 47 MPa). Furthermore, it exhibited commendable bioactivity and biodegradability. These results suggest that the high-precision 3D-printed CSi-Mg scaffolds hold great promise for addressing challenging bone defect cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Crystals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.