Abstract
Dopamine transporter imaging with single-photon emission computed tomography (SPECT) is a valuable tool for both clinical routine and research studies. Recently, it was found that the image quality could be improved by introduction of the three-dimensional ordered subset expectation maximization (3D-OSEM) reconstruction algorithm, which provides resolution recovery. The aim of this study was to systematically evaluate the potential benefits of 3D-OSEM in comparison with 2D-OSEM under critical imaging conditions, for example, scans with a high radius of rotation. Monte Carlo simulation scans of a digital brain phantom with various disease states and different radii of rotation ranging from 13 to 30 cm were reconstructed with both 2D-OSEM and 3D-OSEM algorithms. Specific striatal binding and putamen-to-caudate ratios were determined and compared with true values in the phantom. The percentage recovery of true striatal binding was similar between both reconstruction algorithms at the minimum rotational radius; however, at the maximum rotational radius, it decreased from 53 to 43% for 3D-OSEM and from 52 to 26% for 2D-OSEM. 3D-OSEM matched the true putamen-to-caudate ratios more closely than did 2D-OSEM in scans with high SPECT rotation radii. 3D-OSEM offers a promising image quality gain. It outperforms 2D-OSEM, particularly in studies with limited resolutions (such as scans acquired with a high radius of rotation) but does not improve the accuracy of the putamen-to-caudate ratios. Whether the benefits of better recovery in studies with higher radii of rotation could potentially increase the diagnostic power of dopamine transporter SPECT in patients with borderline striatal radiotracer binding, however, needs to be further examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.