Abstract
In this paper, we describe a data-driven approach to leverage repositories of 3D models for scene understanding. Our ability to relate what we see in an image to a large collection of 3D models allows us to transfer information from these models, creating a rich understanding of the scene. We develop a framework for auto-calibrating a camera, rendering 3D models from the viewpoint an image was taken, and computing a similarity measure between each 3D model and an input image. We demonstrate this data-driven approach in the context of geometry estimation and show the ability to find the identities, poses and styles of objects in a scene. The true benefit of 3DNN compared to a traditional 2D nearest-neighbor approach is that by generalizing across viewpoints, we free ourselves from the need to have training examples captured from all possible viewpoints. Thus, we are able to achieve comparable results using orders of magnitude less data, and recognize objects from never-before-seen viewpoints. In this work, we describe the 3DNN algorithm and rigorously evaluate its performance for the tasks of geometry estimation and object detection/segmentation, as well as two novel applications: affordance estimation and photorealistic object insertion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.