Abstract

Modern robotic systems are often equipped with a direct three-dimensional (3-D) data acquisition device, e.g., LiDAR, which provides a rich 3-D point cloud representation of the surroundings. This representation is commonly used for obstacle avoidance and mapping. Here, we propose a new approach for using point clouds for another critical robotic capability, semantic understanding of the environment (i.e., object classification). Convolutional neural networks (CNNs), that perform extremely well for object classification in 2-D images, are not easily extendible to 3-D point clouds analysis. It is not straightforward due to point clouds' irregular format and a varying number of points. The common solution of transforming the point cloud data into a 3-D voxel grid needs to address severe accuracy versus memory size tradeoffs. In this letter, we propose a novel, intuitively interpretable, 3-D point cloud representation called 3-D modified Fisher vectors. Our representation is hybrid as it combines a coarse discrete grid structure with continuous generalized Fisher vectors. Using the grid enables us to design a new CNN architecture for real-time point cloud classification. In a series of performance analysis experiments, we demonstrate competitive results or even better than state of the art on challenging benchmark datasets while maintaining robustness to various data corruptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call