Abstract

In this paper dynamics of optical breakdown process in dielectrics induced by femtosecond laser pulses have been simulated numerically. Using rate equations, the dynamics of free electron density in the focusing region during a few laser pulse duration time was studied numerically. Sources of free electron production as well as sinks of electron reduction in the interacting region were considered in the calculations. In the simulation, the propagation of the laser beam through the focusing volume was also taken into account and the footprint of the breakdown process (as an estimation for medium bulk damage) was simulated 3-dimensionally. The temporal and spatial evolution of free electron density has been used for simulating the 3-dimensional footprint of optical breakdown region. The results show that the dynamics of the breakdown footprint (and volume) strongly depends on the laser and medium characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call