Abstract
In this paper, we present an implicit surface reconstruction method with 3D Gaussian Splatting (3DGS), namely 3DGSR, that allows for accurate 3D reconstruction with intricate details while inheriting the high efficiency and rendering quality of 3DGS. The key insight is to incorporate an implicit signed distance field (SDF) within 3D Gaussians for surface modeling, and to enable the alignment and joint optimization of both SDF and 3D Gaussians. To achieve this, we design coupling strategies that align and associate the SDF with 3D Gaussians, allowing for unified optimization and enforcing surface constraints on the 3D Gaussians. With alignment, optimizing the 3D Gaussians provides supervisory signals for SDF learning, enabling the reconstruction of intricate details. However, this only offers sparse supervisory signals to the SDF at locations occupied by Gaussians, which is insufficient for learning a continuous SDF. Then, to address this limitation, we incorporate volumetric rendering and align the rendered geometric attributes (depth, normal) with that derived from 3DGS. In sum, these two designs allow SDF and 3DGS to be aligned, jointly optimized, and mutually boosted. Our extensive experimental results demonstrate that our 3DGSR enables high-quality 3D surface reconstruction while preserving the efficiency and rendering quality of 3DGS. Besides, our method competes favorably with leading surface reconstruction techniques while offering a more efficient learning process and much better rendering qualities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.