Abstract

We present a detailed derivation of a high-order, fully three-dimensional, conservative, monotonicity preserving, flux integral method for the solution of the scalar transport equation. This algorithm, named 3DFLUX, produces highly accurate solutions that are nearly unaffected by numerical dissipation, at a realistic computational cost. The performance of 3DFLUX is characterized by means of several challenging multidimensional tests. 3DFLUX is nominally third-order in space and second-order in time, however, at low Courant numbers, it appears to be superconvergent and, depending on the problem solved, is fourth-order or higher in space. Finally, 3DFLUX is used to simulate advection-diffusion of a complex temperature field in an incompressible turbulent flow of practical relevance, and its results are in excellent agreement with experimental measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.