Abstract

Current predefined architectures for deep learning are computationally very heavy and use tens of millions of parameters. Thus, computational costs may be prohibitive for many experimental or technological setups. We developed an ad hoc architecture for the classification of multispectral images using deep learning techniques. The architecture, called 3DeepM, is composed of 3D filter banks especially designed for the extraction of spatial-spectral features in multichannel images. The new architecture has been tested on a sample of 12210 multispectral images of seedless table grape varieties: Autumn Royal, Crimson Seedless, Itum4, Itum5 and Itum9. 3DeepM was able to classify 100% of the images and obtained the best overall results in terms of accuracy, number of classes, number of parameters and training time compared to similar work. In addition, this paper presents a flexible and reconfigurable computer vision system designed for the acquisition of multispectral images in the range of 400 nm to 1000 nm. The vision system enabled the creation of the first dataset consisting of 12210 37-channel multispectral images (12 VIS + 25 IR) of five seedless table grape varieties that have been used to validate the 3DeepM architecture. Compared to predefined classification architectures such as AlexNet, ResNet or ad hoc architectures with a very high number of parameters, 3DeepM shows the best classification performance despite using 130-fold fewer parameters than the architecture to which it was compared. 3DeepM can be used in a multitude of applications that use multispectral images, such as remote sensing or medical diagnosis. In addition, the small number of parameters of 3DeepM make it ideal for application in online classification systems aboard autonomous robots or unmanned vehicles.

Highlights

  • Computer vision and spectral imaging techniques are becoming increasingly popular in the agricultural and food industries for performing tasks such as classification and quality control

  • We present a new ad hoc architecture consisting of 3D filter banks for the extraction of features in multispectral images

  • Three multispectral datasets were used for obtaining the classification models of the five grape varieties with each of the configurations proposed for each architecture

Read more

Summary

Introduction

Computer vision and spectral imaging techniques are becoming increasingly popular in the agricultural and food industries for performing tasks such as classification and quality control. As consumers are demanding higher quality of food products at a reasonable price, producers are faced with the challenge of performing the tasks of classification and inspection more efficiently and rapidly. These tasks have traditionally been performed manually, which is usually a slow and costly process and depends on the features to be detected being visible to the human eye, which is often not the case [1].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.