Abstract
Cellular biology research relies on microscopic imaging techniques for studying the complex structures and dynamic processes within cells. Fluorescence microscopy provides high sensitivity and subcellular resolution but has limitations such as photobleaching and sample preparation challenges. Transmission light microscopy offers a label-free alternative but lacks contrast for detailed interpretation. Deep learning methods have shown promise in analyzing cell images and extracting meaningful information. However, accurately learning and simulating diverse subcellular structures remain challenging. In this study, we propose a method named three-dimensional cell neural architecture search (3DCNAS) to predict subcellular structures of fluorescence using unlabeled transmitted light microscope images. By leveraging the automated search capability of differentiable neural architecture search (NAS), our method partially mitigates the issues of overfitting and underfitting caused by the distinct details of various subcellular structures. Furthermore, we apply our method to analyze cell dynamics in genome-edited human induced pluripotent stem cells during mitotic events. This allows us to study the functional roles of organelles and their involvement in cellular processes, contributing to a comprehensive understanding of cell biology and offering insights into disease pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Experimental Cell Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.