Abstract

Abstract. Change detection is one of the main topics in Earth Observation, due to its wide range of applications, varying from urban development monitoring to natural disaster management. Most of the recently developed change detection methodologies rely on the use of deep learning algorithms. These kinds of algorithms are generally focused on generating two-dimensional (2D) change maps, thus they are only able to detect horizontal changes in land use/land cover, not considering nor returning any information on the corresponding elevation changes. Our work proposes a step forward, creating and sharing a dataset where two optical images acquired in different epochs are provided together with both the related 2D change maps containing land use/land cover variations and the three-dimensional (3D) maps containing elevation changes. Particularly, our aim is to provide a dataset useful to address and possibly solve the change detection task in 3D. Indeed, the proposed dataset, on the one hand, can empower a further development of 2D change detection algorithms, and, on the other hand, can allow to develop algorithms able to provide 3D change detection maps from two optical images captured in different epochs, without the need to rely directly on elevation data as input. The proposed dataset is publicly available at the following link: https://bit.ly/3wDdo41.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.