Abstract

Six new 3d4f heterobimetallic dinuclear complexes, [(L(1))MLn(hfac)(3)] [M = Cu(II), Ni(II); Ln = Y(III), Er(III), Yb(III); L(1) = 4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenylenebis(salicylideneimine) and hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate], and one tetranuclear complex, [(L(2))Cu(OH)Er(hfac)(3)](2) (where L(2) = 4,5-bis(propylthio)tetrathiafulvalene-N,N'-phenyleneaminosalicylideneimine), have been synthesized. All of the X-ray structures of the coordination complexes have been resolved from single-crystal diffraction. A quantitative magnetic approach has allowed one to determine the Cu-Ln ferromagnetic interaction for Gd(III) (1.29 cm(-1)) and Tb(III) (0.40 cm(-1)) and the antiferromagnetic interaction for Dy(III) (-0.46 cm(-1)) and Yb(III) (-2.25 cm(-1)), while in the case of Er(III), the magnetic interactions are negligible. The UV-visible absorption properties have been studied in a chloroform solution and rationalized by DFT and TD-DFT calculations. Upon oxidation, intramolecular SOMO → LUMO (20,800 cm(-1)) and SOMO-n → SOMO (11,350 cm(-1)) charge transfers appear, while the HOMO → LUMO charge transfers (20,750 cm(-1)) disappear. The reversibility of the oxidation has been confirmed by electrochemistry and absorption properties upon the addition of a reducing agent. Irradiation at the HOMO → LUMO charge-transfer energy of the dinuclear complex [(L(1))NiY(hfac)(3)] induces a ligand-centered fluorescence at 14,450 cm(-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.