Abstract
A bioheat transfer model of the human eye is constructed using weighted extended b-splines as shape functions for the finite element method. This newly developed computational approach is employed to calculate the steady-state temperature distribution in a normal human eye. Firstly, the human eye is evaluated in two dimensions. The simulation results which are verified using the values reported in the literature, point out to better efficiency in terms of the accuracy level. Consequently, to give a more precise representation of the actual human eye, three dimensional modeling is simulated using these new finite elements in conjunction with linear, quadratic and cubic b-splines. Grid convergence number estimates are derived for both sets of simulations. It is shown in this paper that 3D cubic web-spline model is 0.03 °C closer to the mean value of the previous studies including the experimental studies as compared with 0.17 °C improvement obtained with the standard finite element method. Our findings indicate that weighted extended b-spline solutions improve the computational methods for health care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.