Abstract

Non-destructive testing (NDT) of concrete structures is performed using pulse-echo methods. According to the type of the applied waves it can be classified as acoustic (Impact-Echo, Ultrasonics) and electromagnetic methods (Radar). The results are visualised through different imaging processes. This work is performed in the frame of a research project promoted by Deutsche Forschungsgemeinschaft (FOR384).The objective of data fusion is to use the complementary information of the different methods. Radar can detect metallic reflectors in concrete (metallic ducts and concrete reinforcement) very well. This method is not able to locate defects behind these reflectors (injecting defects, defects behind close concrete reinforcement), because the electromagnetic waves are completely reflected at metals. The acoustic methods are able to compensate this deficit i.e. acoustic waves can penetrate through metal. But acoustic waves in the ultrasonic range are completely reflected by air layers. Air layers have smaller influence on radar propagation, so that both methods complement each other.In order to be able to combine the NDT-data from several methods records at the same volume, the different data setsmodes of signals must be adapted. The ultrasonic and radar data have to be reconstructed with programs based on the Synthetic Aperture Focusing Technique (SAFT) before data fusion. Subsequently, a conversion of the data into a uniform format has to be carried out. This is a prerequisite in order to keep the data exchange between the project partners as simple as possible. After the data sets are imported and transferred into a common reference system, they can be processed with operations according to the purpose of the investigation. Results, which have been achieved in concrete test specimen with radar and ultrasonics, will be presented and will show the feasibility of the data fusion method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.