Abstract
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.