Abstract
Creep behavior is an inevitable problem for viscoelastic layered structures and needs to be predicted for long-term service situations. In this study, a new technique to obtain analytical solutions for three-dimensional (3D) viscoelastic equations for layered rectangular plates under time-varying loads is developed to predict bending creep behavior. In the analytical model, all the constituent materials of the plate, including the laminar layers and interlayers, exhibit viscoelastic properties, which are simulated by the Burgers model. The slip effect between neighboring laminar layers due to a relatively soft interlayer is considered. The stresses and displacements of each laminar layer in the layered plates are described by 3D elasticity theory combined with the Boltzmann superposition principle. The viscoelastic analytical solutions are obtained by means of series expansions and the Laplace transformation method. The present solution has good accuracy and agrees with the finite element (FE) solution. The influence of various parameters, such as the modulus degradation pattern, modulus ratio and viscoelastic constants, on the creep of the plate are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.