Abstract
The integration of physics-based models within CAD systems for garment design leads to highly accurate cloth shape results for virtual prototyping and quality evaluation tasks. To this aim, we present a physics-based system for virtual cloth design and simulation expressly conceived for design purposes. This environment should allow the designer to validate her/his style and design option through the analysis of garment virtual prototypes and simulation results in order to reduce the number and role of physical prototypes. Garment shapes are accurately predicted by including material properties and external interactions through a particle-based cloth model embedded in constrained Newtonian dynamics with collision management, extended to complex-shaped assembled and finished garments. Our model is incorporated within a 3D graphical environment, and includes operators monitoring the whole design process of apparel, e.g. panel sewing, button/dart insertion, multi-layered fabric composition, garment finishings, etc. Applications and case studies are considered, with analysis of CAD modelling phases and simulation results concerning several male and female garments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.