Abstract

A general-purpose numerical method is developed for solving the full three-dimensional (3D), incompressible, unsteady Reynolds-averaged Navier-Stokes (URANS) equations in natural river reaches containing complex hydraulic structures at full-scale Reynolds numbers. The method adopts body-fitted, chimera overset grids in conjunction with a grid-embedding strategy to accurately and efficiently discretize arbitrarily complex, multiconnected flow domains. The URANS and turbulence closure equations are discretized using a second-order accurate finite-volume approach. The discrete equations are integrated in time via a dual-time-stepping, artificial compressibility method in conjunction with an efficient coupled, block-implicit, approximate factorization iterative solver. The computer code is parallelized to take full advantage of multiprocessor computer systems so that unsteady solutions on grids with 106 nodes can be obtained within reasonable computational time. The power of the method is demonstrated by appl...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.