Abstract

A coreless manufacturing process for generic 3D rigid frame topologies will be introduced in this paper. The aim is to extend the field of filament winding from mainly 2D-shells and some exceptional cases of 3D rigid frames. This manufacturing process employs a coreless translation cross-winding method in order to continuously deposit a roving around deflection points in space. On this basis, a design methodology is being created and deductively verified by designing a beam for a three-point bending load case. The composite beam is designed on a macro level simulation approach to match the stiffness of a reference aluminum profile, which is commonly employed as structural component for robotic gripper systems in automotive assemblies. The performance of the beams is subsequently compared by three-point bending experiments. This demonstrates that the composite beam offers equivalent stiffness and strength properties with a weight-reduction potential of nearly 50% for bending loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.