Abstract
Digital Holographic Microscopy (DHM) allows quantitative multi-focus phase contrast imaging that has been found suitable for technical inspection and quantitative live cell imaging. The combination of DHM with fast and robust auto-focus algorithms and a calibrated imaging system enables the determination of axial sample displacements. The evaluation of quantitative DHM phase contrast images permits also an effective detection of lateral object movements. Thus, data for 3D tracking is provided. Multi-wavelength techniques open up prospects for an increased phase resolution in DHM by reduction of parasitic interference effects due to multiple reflections within the measurement setup. For this purpose, the generation of short coherence properties by tunable laser light has been investigated for application in DHM. Results from investigations on sedimenting erythrocytes in suspension demonstrate that DHM enables (automated) quantitative dynamic 3D tracking of multiple cells without mechanical focus adjustment. Furthermore, it is shown that multi-wavelength techniques enhance the phase resolution in quantitative digital holographic cell imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.