Abstract

Anion vacancy migration in the orthorhombic Pnma phase of the lead-halide perovskite CsPbBr3 under hydrostatic pressure is studied computationally. Density functional theory calculations are used to determine transition states, activation enthalpies, and attempt frequencies for vacancies to hop between nearby lattice sites, under pressure in the range 0.0-2.0 GPa. The resulting data are used to parametrize a kinetic model of vacancy migration under the influence of an electric field, which is solved in the steady state to determine the anion vacancy mobility tensor as a function of pressure. It is found that the mobility tensor becomes increasingly anisotropic with increasing pressure, such that at 2.0 GPa, the mobility within the (010) lattice plane is 3 orders of magnitude greater than the mobility normal to it. The results demonstrate the potentially significant influence of pressure, and by extension, other forms of stress, on defect migration in lead-halide perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.