Abstract

Although solid-state phase transformations through chemical reaction with the surrounding environment are important in the field of materials science, the atomic-level dynamics at reacting surfaces have been difficult to observe directly. Herein, we found highly ordered arrays of 1D intermediate crystals with a unique atomic configuration during the thermal sulfidation of 3D-structured MoO2 to 2D layer-structured MoS2. These arrays reveal a dimension-breaking reconstruction process (3D → 1D → 2D) as well as a unique electronic structure evolution. Theoretical calculations show that the 1D crystals have a cross-sectional structure of four transition-metal atoms arranged in a diamond shape; these are critical to the atomic layer-by-layer formation of 2D transition-metal dichalcogenides. Furthermore, electronic structure analyses reveal that the 1D intermediate crystals alter the MoO2/MoS2 contact structure from p- to n-type with increases in the number of formed MoS2 layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.