Abstract

TiO2 nanoparticle (NP)/ITO nanowire (NW) nanocomposites for use as photoelectrode materials were fabricated to improve the charge collection efficiency in solid state dye sensitized solar cells (ss-DSSCs). The average current density for ss-DSSCs containing TiO2 NP/ITO NW arrays was 7.2 mA cm(-2) that was 98% higher than that for the conventional TiO2 NP ss-DSSCs. The intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) studies exhibited that the electron diffusion length of TiO2 NP/ITO-NW nanocomposite ss-DSSCs was in the range of 4.3-5.6 μm, longer than that of TiO2 NP solar cells (2.6-4.1 μm). The longer diffusion length was responsible for the boosted current densities of TiO2 NP/ITO NW nanocomposite ss-DSSCs. We also employed the TiO2 NP/ITO NW nanocomposite photoelectrode to inorganic-organic perovskite solar cells whose energy conversion efficiency was 7.5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.