Abstract
BackgroundFundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.ResultsWe present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.ConclusionsThe method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations.
Highlights
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape
This report presents a framework for 3D+time cell shape analysis, which includes five major steps: cell segmentation, topology fixing, spherical parameterization, shape representation, and shape comparison
We developed a fast random walker method for cell segmentation, which is based on the Laplacian matrix generated from the discrete grid domain and the affinities defined by a Gaussian kernel
Summary
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Cell migration is a highly complex process that integrates many spatial and temporal cellular events [1] It plays important roles in embryonic development, tissue repair, cancer invasion and atherosclerosis [2]. Recent advances in live-cell imaging yield vast amounts of image data [3], and a number of image analysis algorithms with high throughput capability have been developed [4,5]. These were applied for example to characterize mutants that lack the ability to sense gradients of a chemoattractant, or contract their cell body less efficiently while moving. Treating cells as 2D entities has proven effective in understanding some aspects of cell locomotion and in identifying
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.