Abstract

We perform quantum dynamics calculations for the reaction H + O2 → O + OH on the ground-state potential energy surfaces CHIPR [Varandas, J. Chem. Phys., 2013, 138, 134117] and DMBE IV [Pastrana et al., J. Phys. Chem. 1990, 94, 8073] using a three-dimensional time-dependent wave packet formalism based on hyperspherical coordinates. Initial rovibrational state [O2(v = 0-4, j = 1-5)] dependent reaction probabilities are calculated for the case J = 0. The J-shifting scheme is employed to estimate initial state selected integral cross-sections as well as thermal rate coefficients, which is verified using a realistic extrapolation scheme. The calculated total and state-to-state rate coefficients are compared with the findings of recent experimental studies and previous theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.