Abstract

Solar-driven interfacial evaporation co-generation (SIE-CG) technology is of great significance in solving the problem of water and energy shortage. Herein, we report the ionic liquid-assisted alignment of waste biomass tea residue-based microcrystalline cellulose for aerogels (abbreviated as TPPA-5) with aligned channels for solar-driven interfacial evaporation co-generation. In the ionic liquid, strong H-bonding is formed between the pyranoid rings of cellulose combined with the slow freezing technique, resulting in the microcrystalline cellulose being reoriented, which allowed TPPA-5 to form abundant aligned channels after solvent replacement and freeze-drying. These aligned channels enable the brine to form a localized circulating flow, which is conducive to the improvement of the TPPA's evaporation rate and salt resistance. The salinity gradient is naturally formed in the channel of TPPA, which enables TPPA-5 to show excellent power generation performance. The evaporation rate of TPPA-5 can reach 3.39 kg m-2 h-1 under 1 kW m-2. With methanol as a highly polar proton solvent, the maximum output voltage obtained was 67.534 mV due to the overlapping electric double-layer effect formed by hydrogen protons on the TPPA surface, and the energy utilization efficiency is 95.95%. Moreover, TPPA-5 can purify pesticide-containing wastewater, which has the advantages of being recyclable and environmentally friendly, showing potential application value in the field of seawater desalination and steam co-generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.