Abstract

A quasi-periodic array of 3D gold-nanoparticle-capped SiO2 microspheres (Au@SiO2) was designed and prepared with a facile approach to enhance the Raman signal intensity of adsorbed biomolecules. Through adjusting the thickness and annealing of Au thin films initially deposited on arrays of self-assembled SiO2 microspheres, we were able to control the diameter of Au nanoparticles and their interparticle spacing to produce two types of plasmonic near-field hot spots, locating at the gaps of such densely arranged Au nanoparticles on individual SiO2 microspheres and in the gap regions of neighboring SiO2 microspheres, respectively. Such double near-field enhancement mechanism leads to a surface-enhanced Raman scattering (SERS) enhancement factor up to 3 × 106 for Rhodamine 6G molecules. The SERS signal intensity was highly uniform with a relative standard deviation of 4.5%. This 3D SERS substrate has significant potential for various applications in the field of SERS detection of analytes and wearable biosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.