Abstract

This paper proposes a method for reconstructing 3D detailed structures of internal organs such as gastric wall from endoscopic video sequences. The proposed method consists of the four major steps: Feature-point-based 3D reconstruction, 3D point cloud stitching, dense point cloud creation and Poisson surface reconstruction. Before the first step, we partition one video sequence into groups, where each group consists of two successive frames (image pairs), and each pair in each group contains one overlapping part, which is used as a stitching region. Fist, the 3D point cloud of each group is reconstructed by utilizing structure from motion (SFM). Secondly, a scheme based on SIFT features registers and stitches the obtained 3D point clouds, by estimating the transformation matrix of the overlapping part between different groups with high accuracy and efficiency. Thirdly, we select the most robust SIFT feature points as the seed points, and then obtain the dense point cloud from sparse point cloud via a depth testing method presented by Furukawa. Finally, by utilizing Poisson surface reconstruction, polygonal patches for the internal organs are obtained. Experimental results demonstrate that the proposed method achieves a high accuracy and efficiency for 3D reconstruction of gastric surface from an endoscopic video sequence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.