Abstract

Carbonaceous materials are promising anodes for potassium-ion batteries (PIBs). However, it is hard for large K ions (1.38 Å) to achieve long-distance diffusion in pristine carbonaceous materials. In this work, the following are synthesized: S/N codoped carbon nanofiber aerogels (S/N-CNFAs) with optimized electronic structure by S/N codoping, enhanced interlayer spacing by S doping, and a 3D interconnected porous structure of aerogel, through a pyrolysis sustainable seaweed (Fe-alginate) aerogel strategy. Specifically, the S/N-CNFAs electrode delivers high reversible capacities of 356 and 112 mA h g-1 at 100 and 5000 mA g-1 , respectively. The capacity reaches 168 mA h g-1 at 2000 mA g-1 after 1000 cycles. A full cell with a S/N-CNFAs anode and potassium prussian blue cathode displays a specific capacity of 198 mA h g-1 at 200 mA g-1 . Density functional theory calculations indicate that S/N codoping is beneficial to synergistically improve K ions storage of S/N-CNFAs by enhancing the adsorption of K ions and reducing the diffusion barrier of K ions. This work offers a facile heteroatom doping paradigm for designing new carbonaceous anodes for high-performance PIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.