Abstract

AbstractPlastic injection molding (PIM) is well known as a manufacturing process to produce products with various shapes and complex geometry at low cost. Determining optimal settings of process parameters critically influence productivity, quality, and cost of production in the PIM industry. To study the effect of the process parameters on the cooling of the polymer during injection molding, a full three‐dimensional time‐dependent injection molding analysis was carried out. The studied configuration consists of a mold having cuboids‐shaped cavity with two different thicknesses and six cooling channels. A numerical model by finite volume was used for the solution of the physical model. A validation of the numerical model was presented. The effect of different process parameters (inlet coolant temperature, inlet coolant flow rate, injection temperature, and filling time) on the cooling process was considered. The results indicate that the filling time has a great effect on the solidification of the product during the filling stage. They also show that low coolant flow rate increases the heterogeneity of the temperature distribution through the product. The process parameter realizing minimum cooling time not necessary achieves optimum product quality and the complete filling of the cavity by the polymer material. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call