Abstract

Currently, one of the renewable energy sources is fuel cells, namely chemical energy is directly converted into electricity. Designing new or enhancing the existing fuel cells, much attention is devoted to the search of new effective catalysts, which would allow increasing the effectiveness of fuel cells and creating the background for designing new technologies for catalysts formation.The aim of the work is to form efficient and inexpensive nanostructured catalysts by electroplating 3D structure metal copper-nickel (Cu-Ni) foams on titanium (Ti) surface and decorating them with low amounts of platinum nanoparticles (PtNP) for the electrooxidation of sodium borohydride (NaBH4). The Cu-Ni foam was prepared by electrochemical deposition (I deposition=1.5 Acm-2, t deposition= 3,6 and 9 min) on Ti surface. The electrolyte contained 0.5 M Ni2+ ions, and the concentrations of Cu2+ ions ranged from 0.01 to 0.02 M.PtNP particles were deposited on Cu-Ni foam (noted (Pt(Cu-Ni)/Ti)) by immersion of Cu-Ni foam into 1 mM H2PtCl6 solution at 25 °C for 1 minute. The morphology and composition of the prepared catalysts were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The electrocatalytic activity of the 3D catalysts was evaluated towards the oxidation of borohydride by cyclic voltammetry method in 0.05 M NaBH4 solution in an alkaline media in the potential range from -1.2 to 0.6 V (vs. Ag/AgCl) and with an electrode potential scan rate of 10 mVs-1.The study showed that the prepared 3D Cu-Ni foam and Pt(Cu-Ni)/Ti have good electrochemical stability in alkaline NaBH4 solution. It was also observed that immersion of Cu-Ni foam in a platinum-containing solution for 1 min increased the electrocatalytic activity of the prepared Pt(Cu-Ni)/Ti catalysts for NaBH4 oxidation compared to Cu-Ni foam. Acknowledgment This project has received funding from European Social Fund (project No 09.3.3-LMT-K-712-19-0138) under a grant agreement with the Research Council of Lithuania (LMTLT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call