Abstract

The quantitative assessment of surgical outcomes using personalized anatomical models is an essential task for the treatment of spinal deformities such as adolescent idiopathic scoliosis. However an accurate 3D reconstruction of the spine from postoperative X-ray images remains challenging due to presence of instrumentation (metallic rods and screws) occluding vertebrae on the spine. In this paper, we formulate the reconstruction problem as an optimization over a manifold of articulated spine shapes learned from pathological training data. The manifold itself is represented using a novel data structure, a multi-level manifold ensemble, which contains links between nodes in a single hierarchical structure, as well as links between different hierarchies, representing overlapping partitions. We show that this data structure allows both efficient localization and navigation on the manifold, for on-the-fly building of local nonlinear models (manifold charting). Our reconstruction framework was tested on pre- and postoperative X-ray datasets from patients who underwent spinal surgery. Compared to manual ground-truth, our method achieves a 3D reconstruction accuracy of 2.37 +/- 0.85 mm for postoperative spine models and can deal with severe cases of scoliosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.