Abstract

Mathematical similarities and parallels between two different physical objects, optical solitons and matter-wave solitons, both described by similar mathematical models: the nonlinear Schrodinger equation (NLSE) and the Gross-Pitaevskii equation (GPE) model, open the possibility to study both systems in parallel and because of the obvious complexity of experiments with matter-wave solitons, offer outstanding possibilities in studies of BEC system by performing experiments in the nonlinear optical system and vise versa. In this report we briefly overview recent theoretical studies of the existence and stability of 3D solitons. With contributions from major groups who have pioneered research in this field, the report describes the historical development of the subject, provides a background to the associated nonlinear optical processes, the generation mechanisms of soliton bullets. The main features of nonautonomous matter-wave solitons near the Feshbach resonance with continuously tuned scattering length are investigated. We focus on the most physically important situations where the applied magnetic field is varying in time linearly and periodically. In nonlinear optical applications, this kind of periodic graded-index nonlinear structure with alternating waveguiding and antiwaveguiding segments can be used to simulate different and complicated processes in the total scenario of matterwave soliton bullets generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call