Abstract
Abstract The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to ascertain the 3D structure of the coronal magnetic field is by performing magnetic field extrapolations from the photosphere to the corona. In previous work, it was shown that by prescribing the 3D-reconstructed loops’ geometry, the magnetic field extrapolation produces a solution with a better agreement between the modeled field and the reconstructed loops. This also improves the quality of the field extrapolation. Stereoscopy, which uses at least two view directions, is the traditional method for performing 3D coronal loop reconstruction. When only one vantage point of the coronal loops is available, other 3D reconstruction methods must be applied. Within this work, we present a method for the 3D loop reconstruction based on machine learning. Our purpose for developing this method is to use as many observed coronal loops in space and time for the modeling of the coronal magnetic field. Our results show that we can build machine-learning models that can retrieve 3D loops based only on their projection information. Ultimately, the neural network model will be able to use only 2D information of the coronal loops, identified, traced, and extracted from the extreme-ultraviolet images, for the calculation of their 3D geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.