Abstract

Abstract The growing global demands of safe, low-cost and high working voltage energy storage devices trigger strong interests in novel battery concepts beyond state-of-art lithium-ion battery. Herein, a dual-ion battery based on nanostructured Ni3S2/Ni foam@RGO (NSNR) composite anode is developed, utilizing graphite as cathode material and LiPF6-VC-based solvent as electrolyte. The battery operates at high working voltage of 4.2–4.5 V, with superior discharge capacity of ∼90 mA h g−1 at 100 mA g−1, outstanding rate performance, and long-term cycling stability over 500 cycles with discharge capacity retention of ∼85.6%. Moreover, the composite simultaneously acts as the anode material and the current collector, and the corrosion phenomenon can be greatly reduced compared to metallic Al anode. Thus, this work represents a significant step forward for practical safe, low-cost and high working voltage dual-ion batteries, showing attractive potential for future energy storage application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.